overnight under an atmosphere of argon. Removal of the urea and concentration of the filtrate gave a residue which was purified by flash chromatography (60:35:5 MeOH/CHCl₃/HOAc) and then crystallization from MeOH/acetone to afford **20a** (201.0 mg, 50% yield): mp 170–174 °C; TLC (20% MeOH/CHCl₃ and some HOAc) R_f 0.26; $[\alpha]^{22}_{D}$ +4.7 (c 0.0143, MeOH); IR (Nujol) 3255, 1686, 1646, 1462 cm⁻¹; ¹H NMR (DMSO- d_6) δ 10.09 (s, NH), 9.04 (s br, 2 H, amidine), 8.75 (s, br, 2 H, amidine), 8.31 (t, 5.9, NH), 7.90 (s, NH), 7.16 (d, 1.4, 1 H), 6.81 (d, 1.4, 1 H), 4.14 (dd, 3.9, 7.3, 1 H), 3.79 (s, NCH₃), 3.48 (q, 5.9, 2 H), 2.59 (t, 5.9, 2 H), 2.41–1.85 (m, 4 H); FAB-MS, m/z (relative intensity) 320 (M – Cl, 6.2). Anal. Calcd for C₁₄H₂₁N₆O₃Cl·H₂O (374.45): C, 44.9; H, 6.1. Found: C, 45.5; H, 6.1.

(5S)-3-[1-Methyl-4-(2-pyrrolidone-5-carboxamido)pyrrole-2-carboxamido]propionitrile (22a). A suspension of nitrile 17 (943.7 mg, 4.25 mmol) in MeOH (30.0 mL) was hydrogenated over 5% Palladium on charcoal (404 mg) at room temperature and atmospheric pressure. Removal of the catalyst and concentration of the filtrate gave an oily residue, which was coevaporated with dry CH_2Cl_2 (twice, 40 mL) to give amine 21 as a foamy off-white material. Owing to the instability of the amine, it was used directly in the following reaction. A mixture of acid 8a (884.0 mg, 6.85 mmol), DMAP (78.0 mg, 0.64 mmol), and amine 21 was dissolved in dry DMF (15.0 mL) and chilled (0 °C). To this solution was added DCC (1.36 g, 6.50 mmol) in dry DMF (8.0 mL). After 15 min at 0 °C, the reaction mixture was stirred at room temperature overnight. Removal of the urea and the solvent gave a solid residue, which was recrystallized from MeOH to afford 22a as a white powder (915.1 mg, 71% yield): mp 245-246 °C; TLC (10% MeOH/CHCl₃) R_f 0.35; IR (Nujol) 3263, 2318, 1692, 1673, 1655, 1533, 1464, 1377 cm⁻¹; ¹H NMR $(DMSO-d_6) \delta 10.00 (s, 1 H), 8.36 (t, 6.2, 1 H), 7.87 (s, 1 H), 7.16$ (d, 1.5, 1 H), 6.79 (d, 1.5, 1 H), 4.11 (dd, 4.2, 8.0, 1 H), 3.79 (s, 3 H), 3.90 (q, 6.2, 2 H), 2.72 (t, 6.2, 2 H), 2.29 (m, 1 H), 2.15 (m, 2 H), 1.92 (m, 1 H); exact MS, m/z (relative intensity) for C₁₄-

R Stereoisomers. Compounds (4R)-(+)-11b, (4R)-(+)-14b, (4R)-(-)-7b, and (5R)-(-)-20b all gave IR, MS, and ¹H NMR data similar to those of the corresponding S isomers. The specific rotations, $[\alpha]^{22}_{D}$, are +2.0° (c 0.0051, MeOH), +7.7° (c 0.0044, H₂O), -6.3° (c 0.0050, MeOH), and -4.6° (c 0.0142, MeOH), respectively.

Determination of DNA Binding Constants. The relative binding constants were estimated by displacement of intercalative binding of ethidium to calf thymus DNA and employment of a value of $K_{\rm assoc} = 1 \times 10^6$ M⁻¹ at pH 7.0, 37 °C, and 40 mM NaCl for ethidium bound to calf thymus DNA.²⁰ It was determined that none of the oligopeptides interferes with the fluorescence measurements, which were performed on a Turner 430 spectrofluorometer. The procedure, which involves following the displacement of the ethidium upon titrating in the drugs and determining the concentration of drug required to displace 50% of the ethidium, follows that of Morgan and co-workers^{20a} and gives relative rather than absolute values for binding constants. Higher concentrations of lexitropsins displace all the ethidium from the DNA.

Acknowledgment. This investigation was supported by grants (to J.W.L.) from the Biotechnology Strategic Grants Programme of the Natural Sciences and Engineering Research Council of Canada and by the National Cancer Institute of Canada.

Registry No. 7a, 111136-83-5; (4*R*)-(-)-7b, 111136-84-6; 8a, 98-79-3; 9a, 4931-66-2; 11a, 110971-80-7; (4*R*)-(+)-11b, 110971-85-2; 13a, 65571-69-9; 14a, 110971-81-8; (4*R*)-(+)-14b, 110971-86-3; 15, 110971-82-9; 17, 3185-95-3; 18, 24064-13-9; 19, 78395-16-1; 20a, 110971-83-0; (5*R*)-(-)-20b, 110971-87-4; 21, 97950-77-1; 22a, 110971-84-1.

Synthesis of 1,2,5,6-Tetrahydrophosphorin 1-Oxides and 1,2-Dihydrophosphorin 1-Oxides from 2,5-Dihydro-1*H*-phosphole 1-Oxide-Dichlorocarbene Adducts

György Keglevich, Gábor Tóth, Imre Petneházy, Péter Miklós, and László Töke*

Organic Chemical Technology Department, Technical University of Budapest, H-1521 Budapest, Hungary

Received April 8, 1987

Reaction of 6,6-dichloro-1-methyl-3-phosphabicyclo[3.1.0]hexane 1-oxides 1 with silver nitrate in alcohols or in water leads to the regioisomers of alkoxy- or hydroxy-1,2,3,6-tetrahydrophosphorin 1-oxides 2A and 2B or 3A and 3B. Each isomer consists of diastereoisomers. Water elimination from the hydroxy derivatives 3 results in the formation of the regioisomers of 1,2-dihydrophosphorin 1-oxides 4A and 4B. Constitution and stereostructure of the compounds has been elucidated by ¹H, ¹³C, and ³¹P NMR spectroscopy.

Although the enlargement of five- and six-membered unsaturated rings by the addition of dihalocarbene and subsequent transformations is a well-established method,¹⁻³ there have been no reports on this kind of ring expansion for phosphorus-containing heterocycles. Recently we reported on the dichlorocarbene addition to 2,5-dihydro-

1H-phosphole 1-oxides and on the spontaneous transformation of certain adducts to 1,2-dihydrophosphorin 1oxides.⁴ In this paper the synthesis of dihydrophosphorins through tetrahydrophosphorins starting from stable 1Hphosphole-dichlorocarbene adducts is discussed.

Results and Discussion

Dihalocarbene adducts can be enlarged in several ways; one of them involves the use of silver salts.^{1,3} Reaction of

Skell, P. S.; Sandler, S. R. J. Am. Chem. Soc. 1958, 80, 2024.
 Parham, W. E.; Reiff, H. E.; Swartzentruber, P. J. Am. Chem. Soc.
 1956, 78, 1437. Winberg, H. E. J. Org. Chem. 1959, 24, 264. Cromarty, A.; Haque, K. E.; Proctor, G. R. J. Chem. Soc. C 1971, 3536. Perchonock, C. D.; Lantos, I.; Finkelstein, J. A.; Holden, K. G. J. Org. Chem. 1980,

^{45, 1950.} (3) Lantos I: Bhattacharise D: Eggleston D. S. J. Org. Chem. 1986,

⁽³⁾ Lantos, I.; Bhattacharjee, D.; Eggleston, D. S. J. Org. Chem. 1986, 51, 4147.

⁽⁴⁾ Keglevich, Gy.; Petneházy, I.; Miklós, P.; Almásy, A.; Tóth, G.; Töke, L.; Quin, L. D. J. Org. Chem. in press.

the dihalocarbene adducts of cyclopentene in aqueous methanol in the presence of silver nitrate gives hydroxyand methoxyhalocyclohexenes.¹ No efforts have been made to prepare the methoxy compounds separately.

Now the analogous reaction of the dichlorocarbene adducts of 2,5-dihydro-3-methyl-1H-phosphole 1-oxides $(1a-d)^4$ was examined. It was found that on boiling the alcoholic or aqueous solution of dichlorocarbene adducts

Table I.	Product	Compositions	for the	Diastereo	mers of
		3-Substituted	5- and		
9 Mathews	1 4 abland	1996 Antenah		anhanin 1	Oridaa

3-Metnyi-4-chioro-1,2,3,6-tetranyarophosphorin	1-Oxides
2a-c and 3a-d	

	product composition, ^a %						
compd	A-trans	A-cis	B-trans	B-cis	ratic base		
2a	43	15	27	15	a		
2b	52	14	26	8	с		
2c	45	15	29	11	а		
3a	40	12	32	16	d		
3b	53	33	14	0	b		
3c	47	35	18	0	d		
3d	33	25	21	21	d		

^a The ratio of the regioisomers was calculated from the relative intensity of the HC-O and HC= ¹H NMR signals, that of the diastereomers from the relative ¹H NMR intensities of the methoxy (a) or the HC-O signals (b) or from the ¹³C NMR intensities of the H₂CO (c) or H₂CP signals (d).

1a-d with silver nitrate, the cyclopropane ring opened to give two regioisomers of the alkoxy- or the hydroxytetrahydrophosphorins 2A and 2Ba-c or 3A and 3Ba-d, respectively both as a mixture of trans and cis epimers (Scheme I, Table I). No hydrolysis occurred when the aqueous solution of phosphinic acid ester derivative 1d was reacted.

Identification of the Products. Since the isomeric tetrahydrophosphorins 2 or 3 could not be separated, the mixtures were subjected to spectroscopic investigations.

The distinction of the regioisomers A and B and the determination of their ratio was possible on the basis of the ¹H NMR signals of the HC– \overline{O} proton in series A (δ \sim 4.3) and on the basis of the olefinic proton in series **B** $(\delta \sim 6.0)$. Regioners A were predominant in every case. The presence of both possible diastereomers in each regioisomer was indicated by the duplication of signals in the ¹H, ¹³C, and ³¹P NMR spectra. Practically the same isomeric ratios were determined from the ¹H, and ¹³C NMR spectra. Product compositions are shown in Table I; it was assumed that the trans form was the major diastereomer. Inspection of Dreiding models suggests that compounds 2 and 3 can exist both in a half-chair and in a twist-boat conformation. Because of the eclipsed positions in the latter it seems to be reasonable to consider only the half-chair conformers. Interconversion of these forms at room temperature should be fast on the NMR time scale (Scheme II).

In series A the H–CO signal is a triplet $({}^{3}J \sim 6 \text{ Hz})$, but this provides no direct information about the conformational situation since both the conformers A-trans₁ and A-cis₁ alone and a fast ring inversion involving also the A-trans₂ and A-cis₂ forms are expected to give rise to a triplet pattern. More useful information can be obtained by applying the Karlplus equation for ${}^{3}J_{\rm PH}$. For the Atrans₁ and A-cis₁ conformers, in which the atoms P and the H-3 are in trans position, ${}^{3}J_{\rm PH} \sim 35$ Hz, while for the A-trans₂ and A-cis₂ conformers, where the atoms concerned are in gauche disposition ${}^{3}J_{\rm PH} \sim 5$ Hz can be expected.⁵ The experimental values of ${}^{3}J_{\rm PH} = 14-23$ Hz (cf. Tables II and III) support the involvement of fast equilibria with nearly identical population of the conformers for both the trans and cis diastereomers.

Because ¹H and ¹³C chemical shifts for the trans and cis isomers are rather close (Tables II–V) their unambiguous assignment is not possible. inspection of the molecular

⁽⁵⁾ Benezra, C. J. Am. Chem. Soc. 1973, 95, 6890.

	14000		1 H NMR ⁴	b.d 8, (mult, integral, J)	anivo-t minidenidom	2.44-1
compd (R, F	۲٬)	A-trans	A-cis	B-trans	B-cis	unresolved
2a (C ₆ H ₅ , CH ₃	,) CCH ₃	1.98 (s, 1.29 H)	2.07 (s, 0.45 H)	1.20 (s, 0.81 H)	1.70 (s, 0.45 H)	$\begin{array}{c} 2.15-3.20 \ (m, 4 \ H, \\ P(CH_2)_2), 7.30-7.97 \\ (m, 5 \ H, \Delta r) \end{array}$
2b (<i>n</i> -C ₃ H ₇ , C ₃	OCH, HC-O or HC ,H ₅) CCH,	$= \frac{3.42 (s, 1.29 H)}{3J_{\text{HH}} = 21.4},$ $= \frac{3J_{\text{HH}}}{5.7} = 5.7)^{c,e}$ 1.95 (s,	$\begin{array}{l} 3.40 \ ({\rm s}, 0.45 \ {\rm H}) \\ 4.19 \ ({\rm dt}, \ {}^{3}J_{\rm PH} \sim 21, \\ {}^{3}J_{\rm HH} \sim 6)^{c,e} \\ 1.98 \ {\rm H}) \end{array}$	3.28 (s, 0.81 H) 6.25 (dt, ³ J _{PH} = 25.7, ³ J _{HH} = 5.7) ^{c.f} 1.47 (s, 1.0	$\begin{array}{l} 3.24 \ ({\rm s}, 0.45 \ {\rm H}) \\ 6.20 \ ({\rm dt}, {}^{3}J_{\rm H} \sim 26, \\ {}^{3}J_{\rm HH} \sim 6)^{c,f} \end{array}$	0.96-1.32 (m, 6 H, OCH,CH ₃ , (CH ₂),CH ₃),
2c (n-C ₄ H ₉ , Ct	OCH, or HC H ₃) CCH,	$= \frac{3.57}{4.19} (dt, 0.66 H, \frac{3.4}{3} H)$	$\begin{array}{l} \mathrm{H}=7.1)^{c.\ell}\\ \mathrm{I}=17.1, \ ^{3}J_{\mathrm{HH}}=5.7)\\ \mathrm{I}.80\ \mathrm{H}) \end{array}$	3.34 (q, ³ Ј _{НН} 8.02 (dt, 0.34 H, ³ Љ _Н ⁼ 1.49 (s)	= 7.1) ^{c.g} : 24.3, ³ JHH = 5.7) c.h	$\begin{array}{c} 1.5b-1.86 \ (m, 4 \ H, \\ (CH_{12}), 1.99-3.07 \\ (m, 4 \ H, P(CH_{2})_{2}) \\ (m, 2H_{10}, 1.99, 1.29-3.10 \\ (CH_{2})_{3}, CH_{3}), 1.24-1.86 \\ (CH_{2})_{3}, 0, 0.82, 10 \\ ((CH_{2})_{3}), 0, 0.82, 2.02-3.10 \end{array}$
a CDCI 201-102	$\begin{array}{c} \text{OCH}_3 \\ \text{HC-O or HC} \\ \end{array}$	$= 3.40 (s, 1.35 H) = 4.15 (dt, 0.60 H, {}^{3}J_{PF})$	$\begin{array}{l} 3.42 (\mathrm{s}, 0.45 \mathrm{H}) \\ \mathrm{I} = 18.6, ^{3} \mathrm{J}_{\mathrm{HH}} = 5.7) \\ \mathrm{d} \ \mathrm{mod} \ \mathrm{d} \ \mathrm{mod} \ \mathrm{d} \ \mathrm{mod} \ \mathrm{d} \ $	3.22 (s, 0.87 H) 6.10 (dt, 0.40 H, ³ J _{PH} =	3.19 (s, 0.33 H) : 24.3 , $^{3}J_{HH} = 5.7$)	(m, 4 H, P(CH ₂) ₂)
	Table III. ¹ H NM	IR Data for the Diastereomers	of 5- and 3-Methyl-4-chl ¹ H NMR ^{<i>a</i>, <i>b</i>, <i>d b</i>}	oro-3-hydroxy-1,2,3,6-tetrah (mult, integral, <i>J</i>)	ydrophosphorin 1-Oxide	s 3a-c
compd (R)		A-trans	A-cis	B-trans	B-cis	unresolved
3a (C ₆ H ₅) CC	3H3	1.90 (s, 1.56 H)		42 (d, 0.96 H, ⁴ <i>J</i> _{PH} = 1.4)	1.62 (s, 0.48 H)	1.99-2.88 (m, 4 H, P(CH ₂) ₂), 4.83 (br s, 1 H, OH), 7.19-7.92
Н	2-0 or HC=	4.44 (dm, 0.52 H, ³ J _{PH}	= 20.0)	$(.92 \text{ (dt, } {}^{3}J_{\text{PH}} = 22.9, {}^{3}J_{\dots} = 5.7\%$	5.84 (dt, ${}^{3}J_{\text{PH}} \sim 24$, ${}^{3}L_{\dots} \sim 6)^{6,e}$	(ш, э.п, Аг)
3b (<i>n</i> -C ₃ H ₁) CC	Н,	1.97 (s, 2.58 H)		.59 (s) °.7	бо нн.	$\begin{array}{c} 0.90-1.20 \ (m, 3 \ H, \\ (CH_{2})_{2}CH_{3}), 1.40-1.87 \\ (m, (CH_{2})_{2})^{c,f} 2.10-2.94 \\ (m, 4 \ H, P(CH_{2})_{2}), 4.95 \\ (n, 2 \ H, P(CH_{2})_{2}), 4.95 \end{array}$
Н(Зе (n-C ₄ H ₉) СС	3-0 ог НС= 4.42 (d) ³ ³ нн ³ ЭН ₃	t, 0.53 H, ${}^{3}J_{PH} \sim 14$, 4.58 (d = 6.4) 1.97 (s, 2.46 H) 1.97 (s, 2.46 H)	t, 0.33 H, ¾ _H ~ 23, [€] = 5.0) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$(81 \text{ (dt, 0.14 H)}^3 J_{\text{PH}} = 24.8, 3J_{\text{HH}} = 5.1)$		(01.5, 1.1.4, 011) $0.76-1.06 (m, 3.H, (CH_3), 1.06-1.88$ $(CH_3)_5CH_3, 1.06-1.88$ $(m, (CH_1)_3)^{-\epsilon.#} 2.06-2.97$ (m, 4.H, P(CH, L), 4.77
Н	C-0 or HC= 4.43 (dt	$t, {}^{3}J_{\rm PH} \sim 16, c, h$	Ę	$\frac{1}{3}$,		$(br s, OH)^{c,h}$
3d (O CH ₃) CC	.Н1 [°]	= 6.1) ^{c.0} 1.94 (br s, 1.74 H		$^{-0_{\rm HH}} = 5.1$) 53 (d, 0.63 H, $^{4}J_{\rm PH} = 1.4$) ^{<i>i</i>}	$1.58 (0.63 \text{ H}, {}^{4}J_{\text{PH}} = 2.9)^{i}$	$2.04-2.72 (m, 4 H, P(CH_2)_1), 4.42 P($
00	ЭН,	3.79 (d, ³ J _{PH} = 11.	4 <i>)</i> ⁷ :	$1.73 (d, {}^{3}J_{\rm PH} = 11.4)^{j,k}$	$3.77 (d, {}^{3}J_{PH} =$	(Br S, On)
н	2-0 or HC=	\sim 4.6 (dt, ³ $J_{\rm HH}$ = 5.7	<i>г.</i> г (${}^{3.85}_{3}$ (dt, ${}^{3}J_{\rm PH} = 30.0$, ${}^{3}J_{\rm HH} = 5.7$) c, n, o	$5.84 (dt, {}^{3}J_{PH} = 31.4, {}^{3}J_{HH} = 5.7)_{c,n,o}$	

Table IV. ¹³C NMR Data for the Diastereomers of 5- and 3-Methyl-3-alkoxy-4-chloro-1,2,3,6-tetrahydrophosphorin 1-Oxides 2a-c

compd	¹³ C NMR, ^{<i>a,b</i>} δ (<i>J</i> _{P-C})						
$(\mathbf{R}, \mathbf{R}')$	C	A-trans	A-cis	B-trans	B-cis	other	
$2a (C'_{6}H_{5}, C(1'')H_{2})$	C ₂	34.6 (63.7)	35.2 (63.7)	38.6 (64.5)	36.5 (63.0)	for the major isomer: $\delta_{Cg'}$ 128.9 $(J = 11.7)$, ^d $\delta_{Cg'}$ 129.7 $(J = 8.8)$, $\delta_{Cg'}$ 132.1 $(J = 2.9)^{e}$	
	C_3	79.7 (5.9)	78.9 (6.6)	77.8 (3.7)	с		
	C₄	138.9 (11.0)	138.5 (8.0)	C_5 122.7 (6.6)	122.31 (8.1)		
	C_6	33.0 (68.1)	33.6 (6.96)	28.1 (66.7)	29.2 (65.9)		
	CCH ₃	23.0 (8.1)	с	26.6 (5.9)	26.0 (2.9)		
	C _{1″}	56	3.6	50.9	50.4		
2b [/] (C(3')H ₃ C-	C_2	31.7 (60.8)	31.3 (63.4)	35.2 (57.9)	31.4 (63.0)	unresolved signals: $\delta_{C_{2'}}$ 14.0 ($J = 4.4$), $\delta_{C_{3'}}$ 14.7 ($J = 9.5$), $\delta_{C_{2''}}$ 14.2	
$(2')H_2C(1')H_2,$ $C(2'')H_3C-$ $(1'')H_2)$							
	C_3	76.5 (4.4)	76.7 (6.6)	76.1 (3.7)	с		
	C₄	137.2 (11.0)	137.6 (8.1)	127.7 (11.0)	с		
	C ₅	127.7 (5.1)	с	121.6 (6.6)	120.9 (7.3)		
	C ₆	30.3 (63.0)	26.7 (63.0)	26.3 (61.6)	26.7 (63.0)		
	CCH ₃	22.1 (8.1)	22.4 (7.3)	22.9 (4.4)	с		
	C _{1″}	63.3	64.6	57.6	57.2		
	$C_{1'}$	29.8 (68.1)	с	29.8 (68.1)	С		
$2\mathbf{c}^{f}$	C_2	31.8 (60.8)	32.3 (60.1)	34.8 (58.6)	33.8 (59.0)	unresolved signals: $\delta_{C_{2'}} 22.4$, $\delta_{C_{2'}} 23.1 \ (J = 14.7) \ \delta_{C_{4'}} 12.8$	
(C(4′)H ₃ C-							
$(3')H_2C(2')H_2C$ -							
$(1')H_2, C(1'')H_3)$							
	C_3	78.3 (5.1)	78.6 (5.9)	76.7 (3.7)	76.3 (3.7)		
	C ₄	136.8 (11.0)	137.2 (8.0)	127.4 (11.0)	126.6 (12.9)		
	C_5	128.3(5.1)	128.1 (7.3)	122.3 (5.9)	121.5 (7.3)		
	C ₆	29.9 (63.0)	29.0 (59.4)	26.5 (62.3)	26.8 (62.3)		
	CCH3	22.3 (8.1)	С	26.6 (3.7)	c		
	$C_{1''}$	55.4	56.7	49.8	49.6		
	$C_{1'}$	27.9 (68.1)	с	27.6 (68.9)	с		

 a CDCl₃ solution. ^{b}J given in Hz. c Not resolved. d Common for all isomers. e Other signals in the 128.0–135.4 ppm region could not be resolved. f Assignation C₂, C₆, and C_{1'} is tentative.

				¹³ C NM	$\overline{\mathbf{R}^{a,b} \ \delta \ (J_{\mathrm{P-C}})}$	
compd (R)	C	A-trans	A-cis	B-trans	B-cis	other
3a (C' ₆ H ₅)	C ₂	34.2 (66.7)	35.0 (65.9)	39.2 (65.2)	40.5 (62.3)	for the major isomer: $\delta_{C_{2'}}$ 129.0 ($J = 11.7$), $\delta_{C_{3'}}$ 129.8 ($J = 9.5$), $\delta_{C_{4'}}$ 132.6 ($J = 2.9$) ^f
	C ₃	70.3 (5.9)	68.5 (2.2)	72.1 (5.9)	71.9 (3.7)	
	C ₄	с	с	141.1 (13.2)	е	
	C_5	126.2 (5.9)	126.5 (5.0)	118.5 (7.3)	118.3 (5.1)	
	C ₆	33.7 (65.2)	34.7 (65.2)	28.7 (66.7)	29.1 (65.9)	
	CCH ₃	23.3 (9.5)	19.5 (12.5)	29.6 (9.5)	28.3	
3b $(C(3')H_3C(2')H_2C(1')H_2$	C ₂	32.0 (63.7)	32.2 (65.2)	30.3 (63.7)		unresolved signals: $\delta_{C_{2'}}$ 14.4 (J = 3.7), $\delta_{C_{2'}}$ 15.1 (J = 14.7)
	C ₃	68.9 (2.9)	68.6 (5.1)	71.2(3.7)		03
	Ċ,	130.9 (9.5)	130.3 (11.0)	140.3 (11.0)		
	Ċ.	125.3(4.4)	125.9(5.1)	117.9 (6.6)		
	Č,	29.4 (68.9)	31.0 (67.4)	26.8 (62.3)		
	ĊСН.	23.0	(9.5)	28.9(3.7)		
	Č ₁	32.4	(60.1)	38.4 (59.3)		
3c $(C(4')H_3C(3')H_2C(2')H_2C(1')H_2)$	\tilde{C}_2	31.6 (63.0) ^g	31.8 (63.0) ^g	29.0 (68.9)		unresolved signals: $\delta_{C_{2'}}$ 22.4, $\delta_{C_{3'}}$ 23.1 (J = 13.9), $\delta_{C_{4'}}$ 12.8
	C_3	68.4	68.2	70.8 (3.7)		
	C_4	130.6 (9.5)	130.0 (11.0)	141.1 (10.3)		
	C_5	125.0 (5.1)	125.5(5.1)	117.6 (6.6)		
	C ₆	26.6 (68.1)	28.4(68.1)	27.7 (68.1)		
	CCH ₃	22.6	(9.5)	28.5(5.1)		
	C _{1′}	32.0	(60.8)	38.1(58.6)		
3d $(C(2')H_3O(1'))$	C_2	$31.7 \ (85.7)^h$	32.3 (85.7) ^h	38.1	(83.5)	
· · · · ·	C_3	$70.0 \ (2.9)^i$	70.4 (4.4) ^j	73.0 (2.2) ^j	73.1 (2.2) ^j	
	C_4	$130.5 (12.5)^{k}$	$131.3 \ (10.3)^k$	140.4 $(11.7)^l$	140.7 $(11.7)^l$	
	C_5	$126.5 (4.4)^n$	$127.3 (5.1)^n$	118.5 (5.9) ^p	119.0 (5.9) ^p	
	C_6	$31.8 (88.7)^q$	31.8 (90.9) ^q	26.7 (89.4) ^r	26.6 (90.9) ^r	
	CCH ₃	23.4 $(12.5)^{u}$	23.5 (11.7) ^u	28.6 (5.9) ^v	29.2 (7.3) ^v	
	C ₂	51.2	$(5.9)^{z}$	51.5	$(6.6)^{z}$	

 Table V.
 ¹³C NMR Data for the Diastereomers of 5- and 3-Methyl-4-choro-3-hydroxy-1,2,3,6-tetrahydrophosphorin 1-Oxides

 3a-d

 a CDCl₃ solution. ^{b}J given in Hz. c Overlapped by the signals of the aromatic carbons. d Footnote deleted on revision. e Not resolved. f Other signals in the 128.5–139.0 ppm region could not be resolved. $^{g-z}$ May be reversed.

Table VI. ³¹P NMR Shifts for the Diastereomers of 3-Substituted 5- and 3-Methyl-4-chloro-1,2,3,6-tetrahydrophosphorin 1-Oxides

$\delta_{\mathfrak{dl}_{\mathbf{P}}}$ (in CDCl ₃)						
compd	A-trans	A-cis	B-trans	B-cis		
2a	29.9	29.9	29.6	32.5		
2b	38.5	36.6	37.0	37.5		
$2c^a$	39.2	38.4	37.7	37.7		
3a	30.3	30.3	30.3	28.9		
3b	39.6	38.2	39.6			
3c	38.6	40.0	40.0			
3d	45.0	46.4	46.4	44.6		

^aAfter adding a drop of methanol to the sample, four signals at 44.0, 43.2, 42.5 and 43.0 ppm could be observed.

Table VII. MS Data for 5- and 3-Methyl-3-alkoxy-4-chloro-1,2,3,6-tetrahydrophosphorin 1-Oxides 2a-c

	relat	nsity	
fragment (m/e)	2a	2b	2c
M ^{+ a}	40	23	22
$[M - R']^+$	43	40	48
$[M - R]^+$		46	20
[M - R'O]+	100	100	100
[M ~ R'OH]+	68	35	44
$[M - Cl]^+$	23	9	17
$[M - CH_2 CHOR']^+$		9	20
$[M - CH_2C(CH_3)OR']^+$	8	48	42
$[M - (R'O + P(O)R)]^{+} + H (116)$		15	13
$[M - (R'O + P(O)R)]^+$ (115)	21	13	33
$[P(O)RH]^+$	68	7	4
[P(O)R] ⁺	13		

 $^{a}m/e$ values for the molecular ions of 2a and 2b,c are 270 and 250, respectively.

Table VIII. MS Data for 5- and 3-Methyl-4-chloro-3-hydroxy-1,2,3,6-tetrahydrophosphorin 1-Oxides 3a-d

	relative intensity					
fragment (m/e)	3a	3b	3c	3d		
M ^{+ a}	50	47	58	14		
$[M - CH_3]^+$	56	38	27	65		
$[M - OH]^+$	13	34	35	9		
M - H ₂ O]+	46	69	66	24		
$[M - CI]^+$	100	100	100	89		
M - CH ₂ CHOH]+		8	3	9		
$[M - CH_2C(CH_3)OH]^+$		12	9	4		
$[M - (H_2O + CI)]^+$		11	10	6		
$[M - (H_2O + R)]^+ + H (162)$		25	24	6		
$[M - (H_{2}O + R)]^{+}$ (161)		7	6	7		
$P(O)RHI^+$	66	6	4	100		
$[P(O)R]^+$	30	3	3	99		
$[PO]^+$ (47)		17	29	49		

 $^{a}m/e$ values for the molecular ions of 3a, 3b, 3c, and 3d are 256, 222, 236, and 210, respectively.

Table IX. Ratio of the Isomers and ³¹P NMR Chemical Shifts for 3- and 5-Methyl-4-chloro-1,2-dihydrophosphorin 1-Oxides 4a-c

			-		
	product compostn,%		δ31 _P (in CDCl ₃)		
compd	A	В	A	В	
 4a	74	26	15.3	14.2	
4b	73	27	25.0	24.2	
4c	75	25	26.0	25.2	

model shows, however, that in the A-cis₁ form there is an unfavourable electric interaction between the oxygen atoms of the OR' and P=O groups, and therefore we assumed that it was the trans form which was predominant. For tetrahydrophosphorins **3Ab**-d having an electron-releasing substituent at phosphorus a shift in favor of the cis stereoisomer (Table I) can be explained by the possibility of the formation of an intramolecular hydrogen bridge in the A-cis₁ form.

For the regioisomers **2B** and **3B** the existence of B-trans₁ \rightleftharpoons B-trans₂ and a B-cis₁ \rightleftharpoons B-cis₂ type equilibria was again substantiated on the basis of the measured ${}^{3}J_{PC}$ values (3.7-9.5 Hz) (cf. Tables IV and V). For the trans disposition of the P and C atoms ${}^{3}J_{PC} \sim 19$ Hz, while for the gauche relationship ${}^{3}J_{PC} \sim 2$ Hz is expected.⁶

¹H NMR data characteristic for the isomers of 2 and 3 are listed in Tables II and III, respectively. It can be seen from Table II that the difference of the ¹H NMR shifts for the methoxy groups in the two regioisomers of 2a and 2c is ~0.18 ppm, while this difference for their diastereomers is ~0.03 ppm. In the ¹³C spectra only part of the signals were resolved for the individual isomers. For the assignment of signals the attached proton test (APT) technique was used (cf. Tables IV and V). The isomers of 2 and 3 were characterized by ³¹P NMR chemical shifts (Table VI). Signal overlap was often observed.

Mass spectral (MS) data for 2 and 3 are presented in Tables VII and VIII, respectively. Fragmentation of alkoxy and hydroxy derivatives is similar, the base peak is $[M - R'O]^+$ for 2a-c and $[M - Cl]^+$ for 3a-c.

When reactions were carried out in methanol-water mixture, the isomers of both the methoxy and hydroxy derivatives (2 and 3) were formed according to 31 P NMR.

Dehydration of Hydroxytetrahydrophosphorines 3. Isomeric mixtures of 3 were refluxed in toluene in the presence of potassium or sodium hydrogen sulfate⁷ to give dihydrophosphorins 4A and 4Ba-c (Scheme III, Table IX). Their ratio could be calculated from the relative intensity of the methyl signals in the ¹H NMR spectra. This appears in the minor isomer (B) as a doublet (J =1.5 Hz) due to the allylic coupling. A shift in the ratios

⁽⁶⁾ Adiwidjaja, G.; Meyer, B.; Thiem, J. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1979, 34, 1547.

⁽⁷⁾ Domnin, N. A.; Beletskaya, A. S. Zh. Obshch. Khim. 1954, 24, 1636. Seka, R.; Tramposch, O. Chem. Ber. 1942, 75, 1379.

	¹ H NMR, ^{<i>a,b,d</i>} δ (mult, integral, <i>J</i>)					
compd	······································	A	В	other		
4a	CH ₃	2.07 (s, 2.22 H)	2.17 (d, 0.78 H, ${}^{4}J_{\rm PH} = 1.5$)	2.60-3.10 (m, 2 H, PCH ₂), 7.25-7.90 (m, Ar, 5 H)		
	PCH=	$6.15 \text{ (t, } {}^{2}J_{\text{PH}} = {}^{3}J_{\text{HH}} = 14.0)^{c,e}$	c,e			
	PCH=CH or PCH ₂ CH=	6.86 (dd, 0.74 H, ${}^{3}J_{PH} = 35.7,$ ${}^{3}J_{HH} = 14.0$)	6.23 (dt, ${}^{3}J_{PH}$ ~ 20, ${}^{3}J_{HH}$ = 7.1) ^{c,e}			
4b	CH ₃	2.06 (s, 2.19 H)	2.15 (d, 0.81 H, ${}^{4}J_{\rm PH} = 1.5$)	0.85-1.22 (m, 3 H, CH ₂ CH ₃), 1.38-2.02 (m, 4 H, (CH ₂) ₂), 2.27-3.14 (m, 2 H, PCH ₂)		
	PCH=	$6.13 \text{ (t, } {}^{2}J_{\text{PH}} = {}^{3}J_{\text{HH}} = 13.2)^{c,f}$	c,f			
	PCH=CH or PCH ₂ CH=	6.72 (dd, 0.73 H, ${}^{3}J_{PH} = 32.9,$ ${}^{3}J_{HH} = 13.2$)				
4c	CH ₃	2.05 (s, 2.25 H)	2.11 (s, 0.75 H)	0.72-1.09 (m, 3 H, CH ₂ CH ₃), 1.09-1.95 (m, 6 H, (CH ₂) ₃), 2.20-3.09 (m, PCH ₂)		
	PCH=	$6.11 \text{ (t, } {}^{2}J_{\text{PH}} = {}^{3}J_{\text{HH}} \\= 13.2)^{c,\mathcal{S}}$	c,g			
	PCHCH or PCH ₂ CH=	6.68 (dd, 0.75 H, ${}^{3}J_{\rm PH} = 32.9,$ ${}^{3}J_{\rm HH} = 13.2)$	с,д			

Table X.	¹ H NMR Data fo	r 3- and 5-Methyl-4	4-chloro-1,2-dihydrog	ohosphorin 1-Oxides 4a-c
----------	----------------------------	---------------------	-----------------------	--------------------------

^a CDCl₃ solution. ^bJ given in Hz. ^cThe signals are partly overlapped. ^d Total intensity denoted by e-g. ^e1.26 H. ^f1.27 H. ^g1.25 H.

	¹³ C NMR ^{a,b} δ (J_{P-C})					
compd (R)		А	В		other	
$4a (C'_{6}H_{5})$	C ₂	35.5 (71.1)	29.6 (71.8)	common for the two isomers: 10.3), $\delta_{C'}$ 131.4 (J = 2.9)	$\delta_{C_{2'}}$ 127.8 (J = 12.5); $\delta_{C_{3'}}$ 129.8 (J =	
	C_3	122.8 (19.8)	122.2(11.0)			
	C₄	129.7° (13.9)	d			
	C_5	143.4	149.0			
	Č	118.5 (93.8)	118.0 (97.5)			
	CCH ₃	22.5 (8.8)	24.1 (13.2)			
	$C_{1'}$	132.1	(81.3)			
4b $(C(3')H_3C(2')H_2C(1')H_2)$	C_2	32.0 (74.0)	31.5 (74.0)	common for the two isomers: 11.0)	$\delta_{C_{2'}}$ 14.8 (J = 3.7), $\delta_{C_{3'}}$ 15.1 (J =	
	C ₃	123.4 (19.1)	122.5(10.3)			
	C ₄	130.5 (9.5)	131.4 (19.3)			
	C_5	142.5	148.0			
	C ₆	119.0 (88.7)	118.5 (92.3)			
	CCH ₃	22.9 (8.1)	24.1(11.7)			
	C _{1′}	33.4 (67.4)	27.5(68.1)			
4c (C(4')H ₃ C(3')H ₂ C(2')H ₂ C(1')H ₂)	C_2	28.9 (74.7)	28.5 (74.7)	common for the two isomers:	$\delta_{C_{5'}}$ 22.7, $\delta_{C_{5'}}$ 23.0 (J = 14.7), $\delta_{C_{5'}}$ 12.6	
	$\overline{C_3}$	122.7 (18.3)	122.2(10.3)		-2 -3 -3	
	C ₄	130.1 (9.5)	130.7 (19.0)			
	C_5	142.1	147.6			
	C_6	118.2 (88.7)	117.7 (92.3)			
	CCH ₃	22.5 (10.3)	23.7(11.7)			
	C ₁	32.6(67.4)	26.7 (68.1)			
		1 1	d 0 1 1	1 41 41 1. 1 1		

Table XI.	¹³ C NMR Data	for 3- and 5-Meth	yl-4-chloro-1,2-dih	ydrophosphorin 1-Oxides 4a-c
-----------	--------------------------	-------------------	---------------------	------------------------------

^a CDCl₃ solution. ^bJ given in Hz. ^cPartly overlapped. ^d Overlapped by the aromatic carbon signals.

3A/3B and 4A/4B may be the consequence of the workup. The ³¹P, ¹H, and ¹³C NMR analysis as well as the MS data for 4a-c are listed in Tables IX-XII. ¹³C NMR assignments were confirmed by APT spectra. MS fragmentation is similar to that of analogous compounds.⁴

The alkoxy derivatives 2a-c failed to react under similar circumstances, in contrast to, e.g., 3-ethoxycyclohexene, which readily gave cyclohexadiene on distillation from potassium hydrogen sulfate.⁷

Experimental Section

³¹P, ¹H, and ¹³C NMR spectra were taken on a JEOL FX 100-MHz instrument operating at 40.26, 100.0, and 25.0 MHz, respectively. Chemical shifts are downfield relative to 85% phosphoric acid, (for ³¹P NMR) and to tetramethylsilane (for ¹H and ¹³C NMR) and have a positive sign. All coupling constants

are given in hertz. Infrared spectra were recorded on a SPECORD 75 spectrometer. Mass spectra were obtained on a JEOL-01SG-2 instrument at 75 eV.

Starting materials 1a-d were prepared as described earlier.⁴

5- and 3-Methyl-1-*n*-butyl-4-chloro-3-methoxy-1,2,3,6tetrahydrophosphorin 1-Oxide 2c. A mixture of 1c (1.5 g, 5.88 mmol) and silver nitrate (18.0 g, 0.106 mol) in methanol (50 mL) was boiled for 24 h. The residue obtained after evaporating the solvent was taken up in chloroform and the solvent evaporated after filtration. The crude product was purified by column chromatography using silica gel and chloroform-methanol (96:4) to give 2c (0.75 g, 51%) as an oily mixture of isomers (Table I): $M^+_{found} = 250.0879, C_{11}H_{20}ClO_2P$ requires 250.0890; IR (neat) 2930, 1650, 1460, 1170, 1075, 750 cm⁻¹.

5- and 3-Methyl-4-chloro-3-methoxy-1-phenyl-1,2,3,6tetrahydrophosphorin 1-Oxide 2a was prepared in the same way as 2c: yield, 64%; $M^+_{found} = 270.0605$, $C_{13}H_{16}ClO_2P$ requires 270.0577; IR (neat) 2910, 1640, 1440, 1180, 1070, 750 cm⁻¹.

Table XII. MS Data for 3- and 5-Methyl-4-chloro-1,2-dihydrophosphorin 1-Oxides 4a-c

	relative intensity			
fragment (m/e)	4a	4b	4c	
M ^{+ a}	100	84	100	
$[M - Cl]^+$	19	20	22	
$[M - C_2H_4]^+$		12	3	
$[M - C_2 H_5]^+$		3	8	
$[M - C_3 H_6]^+$		65	56	
$[M - C_3 H_7]^+$		31	6	
$[M - C_4 H_8]^+$			54	
$[M - C_4 H_9]^+$			24	
$[M - P(O)R]^+ + H (115)$	12	14	12	
$[M - P(O)R]^+$ (114)	12	15	16	
$[M - P(O)R]^+ - H$ (113)	6	12	12	
$[C_7H_9]^+$ (91)	14	14	8	
$[M - (Cl + P(O)R)]^+$ (79)	46	100	82	
$[C_{6}H_{5}]^{+}$ (77)	70	82	68	
[PO] ⁺ (47)	77	34	22	

 $^{a}m/e$ values for the molecular ions of 4a, 4b, and 4c are 238, 204, and 218, respectively.

5- and 3-Methyl-4-chloro-3-ethoxy-1-n-propyl-1,2,3,6tetrahydrophosphorin 1-Oxide 2b was prepared similarly from **1b** in ethanol: yield, 49%; $M^+_{found} = 250.0874$, $C_{11}H_{20}ClO_2P$ requires 250.0890; IR (neat) 2970, 1650, 1460, 1180, 1080, 750 cm⁻¹.

Product compositions, ¹H, ¹³C, and ³¹P NMR, and MS data for the mixtures containing the isomers of 2a-c are listed in Tables I, II, IV, VI, and VII, respectively.

5- and 3-Methyl-1-n-butyl-4-chloro-3-hydroxy-1,2,3,6tetrahydrophosphorin 1-Oxide 3c. A solution of 1c (4.3 g, 16,9 mmol) and silver nitrate (28.7 g, 0.169 mol) in water (110 mL) was refluxed for 2 h. The mixture was filtered and extracted with two portions of chloroform (220 mL). The crude product obtained after drying over sodium sulfate and evaporating the solvent was purified by column chromatography using silica gel and chloroform-methanol (97:3) to give 3c (1.8 g, 45%) as a mixture of isomers (Table I): $M^+_{found} = 236.0709$, $C_{10}H_{18}ClO_2P$ requires 236.0734; IR (neat) 3220, 2940, 1640, 1460, 1390, 1140, 750 cm⁻¹.

5- and 3-Methyl-4-chloro-3-hydroxy-1-phenyl-1,2,3,6tetrahydrophosphorin 1-Oxide 3a was prepared in the same way as 3c except that five times more water was used: yield, 40%; $M^{+}_{found} = 256.0471, C_{12}H_{14}ClO_2P$ requires 256.0420.

5- and 3-Methyl-4-chloro-3-hydroxy-1-n-propyl-1,2,3,6tetrahydrophosphorin 1-Oxide 3b was prepared similarly: yield, 42%; mp 103-111 °C; M^{+}_{found} = 222.0554, $C_{9}H_{16}ClO_{2}P$ requires 222.0577; IR (KBr disk) 3220, 2950, 1630, 1450, 1390, 1150, 800 cm^{-1} .

5- and 3-Methyl-4-chloro-3-hydroxy-1-methoxy-1,2,3,6tetrahydrophosphorin 1-Oxide 3d was prepared similarly: yield, 35%; $M^+_{found} = 210.0241$, $C_7H_{12}ClO_3P$ requires 210.0213. Product compositions, ¹H, ¹³C, and ³¹P NMR, and MS data

for the isomers of 3a-d are listed in Tables I, III, V, VI, and VIII.

3- and 5-Methyl-1-n-butyl-4-chloro-1,2-dihydrophosphorin 1-Oxide 4c. 3c (1.2 g, 5.07 mmol) and sodium hydrogen sulfate (0.53 g, 5.07 mmol) in toluene (90 mL) was boiled for 14 h. The residue obtained after filtering and evaporating the solvent was purified by column chromatography using silica gel and chloroform-methanol (98:2) to give 4c (0.78 g, 70%) as an oily mixture of isomers: $M_{found}^+ = 218.0654$, $C_{10}H_{16}ClOP$ requires 218.0629; IR (neat) 2950, 1620, 1565, 1470, 1370, 1170, 750 cm⁻¹.

3- and 5-Methyl-4-chloro-1,2-dihydro-1-phenylphosphorin 1-Oxide 4a was prepared similarly: yield, 61%; M⁺_{found} = 238.0387, C₁₂H₁₂ClOP requires 238.0315; IR (neat) 2940, 1610, 1550, 1430, 1365, 1180, 740 cm⁻¹.

3- and 5-Methyl-4-chloro-1,2-dihydro-1-n-propylphosphorin 1-Oxide 4b was prepared similarly: yield, 66%; M_{found}^+ = 204.0451, C₉H₁₄ClOP requires 204.0472; IR (neat) 2955, 1620, 1560, 1460, 1370, 1180, 730 cm⁻¹. Product compositions and ³¹P NMR chemical shifts can be

found in Table IX and ¹H and ¹³C NMR and MS data in Tables X-XII.

Acknowledgment. The support of the Hungarian Academy of Sciences is thanked for the NMR measurements.

Registry No. 1a, 109011-51-0; 1b, 109011-52-1; 1c, 109011-53-2; 1d, 109011-54-3; A-trans-2a, 109890-86-0; A-cis-2a, 109890-93-9; B-trans-2a, 109891-00-1; B-cis-2a, 109891-07-8; A-trans-2b, 109890-87-1; A-cis-2b, 109890-94-0; B-trans-2b, 109891-01-2; B-cis-2b, 109891-08-9; A-trans-2c, 109890-88-2; A-cis-2c, 109890-95-1; B-trans-2c, 109891-02-3; B-cis-2c, 109891-09-0; A-trans-3a, 109890-89-3; A-cis-3a, 109890-96-2; B-trans-3a, 109891-03-4; B-cis-3a, 109891-10-3; A-cis-3b, 109890-97-3; Atrans-3b, 109890-90-6; B-trans-3b, 109891-04-5; A-trans-3c, 109890-91-7; A-cis-3c, 109890-98-4; B-trans-3c, 109891-05-6; A-trans-3d, 109890-92-8; A-cis-3d, 109890-99-5; B-trans-3d, 109891-06-7; B-cis-3d, 109891-11-4; A-4a, 109891-12-5; B-4a, 109891-15-8; A-4b, 109891-13-6; B-4b, 109891-16-9; A-4c, 109891-14-7; B-4c, 109891-17-0.

Notes

Crystal Structures of 4,5-Dimethyl- and 4-Methylphenanthrenes. Planarity of Congested **Phenanthrene Molecules**

Fumio Imashiro,*1a A. Saika,*1a and Zenei Taira1b

Department of Chemistry, Kyoto University, Kyoto 606, Japan, and Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770, Japan

Received February 11, 1987

In view of the steric interaction in the bay region of phenanthrene, which consists of the C4, C4a, C4b, and C5 carbon atoms, there is interest in the planarity of this region in methylphenanthrenes because some of them are

carcinogenic.² However, the molecular structures of 4,5dimethylphenanthrene (1) and 4-methylphenanthrene (2)have not been determined. The phenanthrene ring in 1 is considered to be nonplanar on the basis of observations of the racemization process for some of its derivatives³ and the crystal structures of related compounds.^{4,5} During an

^{(1) (}a) Kyoto University. (b) Tokushima Bunri University.

⁽²⁾ Briant, C. E.; Jones, D. W. Polynuclear Aromatic Hydrocarbons: Formation and Measurement; Cooke, M., Dennis, A. J., Eds.; Bat-

<sup>Formation and Medsurement; Cooke, M., Dennis, A. J., Eds.; Battelle/Butterworth: Columbus, OH, 1983; pp 191-200.
(3) (a) Newman, M. S.; Hussey, A. S. J. Am. Chem. Soc. 1947, 69, 3023.
(b) Mislow, K.; Hopps, H. B. Ibid. 1962, 84, 3018. (c) Munday, R.; Sutherland, I. O. J. Chem. Soc., A 1968, 80. (d) Scherübl, H.; Fritzsche, U.; Mannschreck, A. Chem. Ber. 1984, 117, 336.
(4) Jones, D. W.; Sowden, J. M.; Hazell, A. C.; Hazell, R. G. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1978, B34, 3021.
(5) Whittleton, S. N.; Dunitz, J. D. Acta Crystallogr., Sect. B: Struct. Crystallogr., Sect. B: Struct.</sup>

Crystallogr., Cryst. Chem. 1982, B38, 2052.